Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
STAR Protoc ; 5(1): 102939, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38451821

RESUMO

M1- and M2-like macrophages infected with Mycobacterium tuberculosis (Mtb) have been found to differ in their capacity to elicit memory CD4+ T cell activation. Here, we present a protocol to quantify and isolate the subset of human memory CD4+ T cells activated in response to autologous monocyte-derived macrophages (MDMs) infected with virulent Mtb. We describe steps for CD14+ monocyte isolation, generating MDMs, culturing Mtb and infection of macrophages, and identifying activated CD4+ T cells by flow cytometry. For complete details on the use and execution of this protocol, please refer to Gail et al.1.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Linfócitos T , Macrófagos/microbiologia , Linfócitos T CD4-Positivos
2.
J Infect Dis ; 229(3): 625-629, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38309710

RESUMO

Infectious diseases (ID) research is vital for global public health, typically led by physician-scientists. This Perspective addresses challenges in the ID workforce and suggests solutions. Physician-scientists have made key discoveries that have significantly impacted human health. The importance of ID research in understanding diseases, leading to treatments and vaccines, is emphasized, along with the need to address persistent and new infections, antimicrobial resistance, and threats like HIV and influenza. The paper analyzes the physician-scientist workforce's struggles, including funding, training, and research-practice integration gaps. We suggest increased funding, better training, and mentorship, more collaborative and interdisciplinary research, and improved recognition systems. The article stresses the urgency of supporting physician-scientists in ID, advocating for proactive prevention and preparedness, and calls for immediate action to enhance ID research and care.


Assuntos
Pesquisa Biomédica , Doenças Transmissíveis , Educação Médica , Médicos , Humanos , Pesquisa Biomédica/tendências , Recursos Humanos , Educação Médica/tendências
3.
iScience ; 26(9): 107706, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37694142

RESUMO

Direct recognition of Mycobacterium tuberculosis (Mtb)-infected cells is required for protection by CD4+ T cells. While impaired T cell recognition of Mtb-infected macrophages was demonstrated in mice, data are lacking for humans. Using T cells and monocyte-derived macrophages (MDMs) from individuals with latent Mtb infection (LTBI), we quantified the frequency of memory CD4+ T cell activation in response to autologous MDMs infected with virulent Mtb. We observed robust T cell activation in response to Mtb infection of M1-like macrophages differentiated using GM-CSF, while M2-like macrophages differentiated using M-CSF were poorly recognized. However, non-infected GM-CSF and M-CSF MDMs loaded with exogenous antigens elicited similar CD4+ T cell activation. IL-10 was preferentially secreted by infected M-CSF MDMs, and neutralization improved T cell activation. These results suggest that preferential infection of macrophages with an M2-like phenotype limits T cell-mediated protection against Mtb. Vaccine development should focus on T cell recognition of Mtb-infected macrophages.

4.
J Immunol ; 211(9): 1385-1396, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695687

RESUMO

Mycobacterium tuberculosis cell-wall glycolipids such as mannosylated lipoarabinomannan (ManLAM) can inhibit murine CD4+ T cells by blocking TCR signaling. This results in suppression of IL-2 production, reduced T cell proliferation, and induction of CD4+ T cell anergy. This study extended these findings to the interaction between primary human CD4+ T cells and macrophages infected by mycobacteria. Exposure of human CD4+ T cells to ManLAM before activation resulted in loss of polyfunctionality, as measured by IL-2, IFN-γ, and TNF-α expression, and reduced CD25 expression. This was not associated with upregulation of inhibitory receptors CTLA-4, PD-1, TIM-3, and Lag-3. By confocal microscopy and imaging flow cytometry, ManLAM exposure reduced conjugate formation between macrophages and CD4+ T cells. ManLAM colocalized to the immunological synapse (IS) and reduced translocation of lymphocyte-specific protein tyrosine kinase (LCK) to the IS. When CD4+ T cells and Mycobacterium bovis BCG-infected monocytes were cocultured, ManLAM colocalized to CD4+ T cells, which formed fewer conjugates with infected monocytes. These results demonstrate that mycobacterial cell-wall glycolipids such as ManLAM can traffic from infected macrophages to disrupt productive IS formation and inhibit CD4+ T cell activation, contributing to immune evasion by M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Humanos , Linfócitos T CD4-Positivos , Glicolipídeos/metabolismo , Sinapses Imunológicas , Interleucina-2/metabolismo , Macrófagos/microbiologia
5.
Sci Transl Med ; 15(702): eadd1175, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379368

RESUMO

Notch signaling promotes T cell pathogenicity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) in mice, with a dominant role for the Delta-like Notch ligand DLL4. To assess whether Notch's effects are evolutionarily conserved and to identify the mechanisms of Notch signaling inhibition, we studied antibody-mediated DLL4 blockade in a nonhuman primate (NHP) model similar to human allo-HCT. Short-term DLL4 blockade improved posttransplant survival with durable protection from gastrointestinal GVHD in particular. Unlike prior immunosuppressive strategies tested in the NHP GVHD model, anti-DLL4 interfered with a T cell transcriptional program associated with intestinal infiltration. In cross-species investigations, Notch inhibition decreased surface abundance of the gut-homing integrin α4ß7 in conventional T cells while preserving α4ß7 in regulatory T cells, with findings suggesting increased ß1 competition for α4 binding in conventional T cells. Secondary lymphoid organ fibroblastic reticular cells emerged as the critical cellular source of Delta-like Notch ligands for Notch-mediated up-regulation of α4ß7 integrin in T cells after allo-HCT. Together, DLL4-Notch blockade decreased effector T cell infiltration into the gut, with increased regulatory to conventional T cell ratios early after allo-HCT. Our results identify a conserved, biologically unique, and targetable role of DLL4-Notch signaling in intestinal GVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Camundongos , Humanos , Animais , Transplante Homólogo , Receptores Notch/metabolismo , Transdução de Sinais , Doença Enxerto-Hospedeiro/metabolismo , Primatas
6.
Front Immunol ; 13: 830482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371092

RESUMO

Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Linfócitos B , Humanos , Imunidade Humoral , Receptores Fc
7.
NEJM Evid ; 1(11): EVIDccon2200125, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38319857

RESUMO

How Do I Navigate Latent Tuberculosis Diagnosis?Tuberculosis (TB) is one of the most common infectious causes of death worldwide. Latent TB infection is a state of quiescent, clinically asymptomatic, noncontagious, chronic infection with the bacterial pathogen Mycobacterium tuberculosis. Diagnosing latent TB infection is often difficult. This Curbside Consult explores the common question: How do I navigate latent tuberculosis diagnosis?


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose Latente/diagnóstico
8.
PLoS Pathog ; 16(10): e1009000, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075106

RESUMO

CD8 T cells provide limited protection against Mycobacterium tuberculosis (Mtb) infection in the mouse model. As Mtb causes chronic infection in mice and humans, we hypothesize that Mtb impairs T cell responses as an immune evasion strategy. TB10.4 is an immunodominant antigen in people, nonhuman primates, and mice, which is encoded by the esxH gene. In C57BL/6 mice, 30-50% of pulmonary CD8 T cells recognize the TB10.44-11 epitope. However, TB10.4-specific CD8 T cells fail to recognize Mtb-infected macrophages. We speculate that Mtb elicits immunodominant CD8 T cell responses to antigens that are inefficiently presented by infected cells, thereby focusing CD8 T cells on nonprotective antigens. Here, we leverage naturally occurring polymorphisms in esxH, which frequently occur in lineage 1 strains, to test this "decoy hypothesis". Using the clinical isolate 667, which contains an EsxHA10T polymorphism, we observe a drastic change in the hierarchy of CD8 T cells. Using isogenic Erd.EsxHA10T and Erd.EsxHWT strains, we prove that this polymorphism alters the hierarchy of immunodominant CD8 T cell responses. Our data are best explained by immunodomination, a mechanism by which competition for APC leads to dominant responses suppressing subdominant responses. These results were surprising as the variant epitope can bind to H2-Kb and is recognized by TB10.4-specific CD8 T cells. The dramatic change in TB10.4-specific CD8 responses resulted from increased proteolytic degradation of A10T variant, which destroyed the TB10.44-11epitope. Importantly, this polymorphism affected T cell priming and recognition of infected cells. These data support a model in which nonprotective CD8 T cells become immunodominant and suppress subdominant responses. Thus, polymorphisms between clinical Mtb strains, and BCG or H37Rv sequence-based vaccines could lead to a mismatch between T cells that are primed by vaccines and the epitopes presented by infected cells. Reprograming host immune responses should be considered in the future design of vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Animais , Antígenos de Bactérias/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/imunologia
10.
PLoS Pathog ; 13(11): e1006704, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29176787

RESUMO

Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Memória Imunológica , Mycobacterium tuberculosis/fisiologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Proliferação de Células , Feminino , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Ativação Linfocitária , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/microbiologia , Tuberculose/fisiopatologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/administração & dosagem
11.
Sci Rep ; 6: 36720, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819295

RESUMO

IL-21 is produced predominantly by activated CD4+ T cells and has pleiotropic effects on immunity via the IL-21 receptor (IL-21R), a member of the common gamma chain (γc) cytokine receptor family. We show that IL-21 signaling plays a crucial role in T cell responses during Mycobacterium tuberculosis infection by augmenting CD8+ T cell priming, promoting T cell accumulation in the lungs, and enhancing T cell cytokine production. In the absence of IL-21 signaling, more CD4+ and CD8+ T cells in chronically infected mice express the T cell inhibitory molecules PD-1 and TIM-3. We correlate these immune alterations with increased susceptibility of IL-21R-/- mice, which have increased lung bacterial burden and earlier mortality compared to WT mice. Finally, to causally link the immune defects with host susceptibility, we use an adoptive transfer model to show that IL-21R-/- T cells transfer less protection than WT T cells. These results prove that IL-21 signaling has an intrinsic role in promoting the protective capacity of T cells. Thus, the net effect of IL-21 signaling is to enhance host resistance to M. tuberculosis. These data position IL-21 as a candidate biomarker of resistance to tuberculosis.


Assuntos
Resistência à Doença/imunologia , Interleucinas/metabolismo , Tuberculose/imunologia , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Citocinas/metabolismo , Feminino , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Interferon gama/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mycobacterium tuberculosis , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais
12.
PLoS Pathog ; 12(1): e1005380, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745507

RESUMO

T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRß deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3ß sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Transferência Adotiva , Animais , Separação Celular , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
13.
J Immunol ; 196(4): 1822-31, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26755819

RESUMO

The differentiation of effector CD8(+) T cells is a dynamically regulated process that varies during different infections and is influenced by the inflammatory milieu of the host. In this study, we define three signals regulating CD8(+) T cell responses during tuberculosis by focusing on cytokines known to affect disease outcome: IL-12, type I IFN, and IL-27. Using mixed bone marrow chimeras, we compared wild-type and cytokine receptor knockout CD8(+) T cells within the same mouse following aerosol infection with Mycobacterium tuberculosis. Four weeks postinfection, IL-12, type 1 IFN, and IL-27 were all required for efficient CD8(+) T cell expansion in the lungs. We next determined if these cytokines directly promote CD8(+) T cell priming or are required only for expansion in the lungs. Using retrogenic CD8(+) T cells specific for the M. tuberculosis Ag TB10.4 (EsxH), we observed that IL-12 is the dominant cytokine driving both CD8(+) T cell priming in the lymph node and expansion in the lungs; however, type I IFN and IL-27 have nonredundant roles supporting pulmonary CD8(+) T cell expansion. Thus, IL-12 is a major signal promoting priming in the lymph node, but a multitude of inflammatory signals converge in the lung to promote continued expansion. Furthermore, these cytokines regulate the differentiation and function of CD8(+) T cells during tuberculosis. These data demonstrate distinct and overlapping roles for each of the cytokines examined and underscore the complexity of CD8(+) T cell regulation during tuberculosis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Ativação Linfocitária/imunologia , Tuberculose Pulmonar/imunologia , Animais , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos
14.
Respirology ; 21(3): 553-5, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26639819

RESUMO

Mycobacterium avium complex (MAC) pulmonary disease is prevalent in middle-aged to elderly women with a thin body habitus. By comparing the rate of serologically diagnosed asymptomatic MAC infection and body mass index among 1033 healthy subjects, we find that middle-aged to elderly women became infected with MAC, regardless of their body habitus.


Assuntos
Infecções Assintomáticas/epidemiologia , Índice de Massa Corporal , Complexo Mycobacterium avium/isolamento & purificação , Infecção por Mycobacterium avium-intracellulare/epidemiologia , Adulto , Idoso , Feminino , Humanos , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores Sexuais , Adulto Jovem
15.
PLoS Pathog ; 11(5): e1004849, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945999

RESUMO

The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRß bias. Using a retro genic model of TB10.44-11-specific CD8+ Tcells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-γ production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Animais , Epitopos de Linfócito T/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Interferon gama/imunologia , Camundongos Endogâmicos C57BL
16.
J Clin Microbiol ; 53(4): 1436-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653414

RESUMO

We report a case of recurrent disseminated Mycobacterium avium complex (DMAC) disease with anti-gamma interferon autoantibodies. To our knowledge, this is the first reported case caused by reinfection with a separate isolate of M. avium. DMAC disease activity was monitored using serum IgG antibody titers against lipid antigens extracted from a MAC strain.


Assuntos
Autoanticorpos/imunologia , Interferon gama/imunologia , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/imunologia , Infecção por Mycobacterium avium-intracellulare/microbiologia , Idoso , Feminino , Humanos
17.
Semin Immunol ; 26(6): 559-77, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25311810

RESUMO

Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease--the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage.


Assuntos
Células Dendríticas/imunologia , Evasão da Resposta Imune , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Tuberculose Pulmonar/imunologia , Imunidade Adaptativa , Apresentação de Antígeno , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Citocinas/imunologia , Células Dendríticas/microbiologia , Células Dendríticas/patologia , Humanos , Imunidade Inata , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Linfonodos/imunologia , Linfonodos/microbiologia , Linfonodos/patologia , Macrófagos/microbiologia , Macrófagos/patologia , Linfócitos T/microbiologia , Linfócitos T/patologia , Falha de Tratamento , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Tuberculose Pulmonar/prevenção & controle , Vacinação
18.
Nat Rev Microbiol ; 12(4): 289-99, 2014 04.
Artigo em Inglês | MEDLINE | ID: mdl-24590243

RESUMO

Clinical trials of vaccines against Mycobacterium tuberculosis are well under way and results are starting to come in. Some of these results are not so encouraging, as exemplified by the latest Aeras-422 and MVA85A trials. Other than empirically determining whether a vaccine reduces the number of cases of active tuberculosis, which is a daunting prospect given the chronic nature of the disease, we have no way of assessing vaccine efficacy. Therefore, investigators seek to identify biomarkers that predict vaccine efficacy. Historically, focus has been on the production of interferon-γ by CD4(+) T cells, but this has not been a useful correlate of vaccine-induced protection. In this Opinion article, we discuss recent advances in our understanding of the immune control of M. tuberculosis and how this knowledge could be used for vaccine design and evaluation.


Assuntos
Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/isolamento & purificação , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Biomarcadores/análise , Ensaios Clínicos como Assunto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA